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Scaling of the linear response function from zero-field-cooled and thermoremanent magnetizatio
in phase-ordering kinetics
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In this paper we investigate the relation between the scaling properties of the linear response function
R(t,s), of the thermoremanent magnetization~TRM! and of the zero-field-cooled~ZFC! magnetization in the
context of phase-ordering kinetics. We explain why the retrieval of the scaling properties ofR(t,s) from those
of TRM and ZFC magnetization is not trivial. Preasymptotic contributions generate a long crossover in TRM,
while ZFC magnetization is affected by a dangerous irrelevant variable. Lack of understanding of both these
points has generated some confusion in the literature. The full picture relating the exponents of all the quan-
tities involved is explicitly illustrated in the framework of the large-N model. Following this scheme, an
assessment of the present status of numerical simulations for the Ising model can be made. We reach the
conclusion that on the basis of the data available up to now, statements on the scaling properties ofR(t,s) can
be made from ZFC magnetization but not from TRM. From ZFC data for the Ising model withd52,3,4 we
confirm the previously found linear dependence on dimensionality of the exponenta entering R(t,s)
;s2(11a) f (t/s). We also find evidence that a recently derived form of the scaling functionf (x), using local
scale invariance arguments@M. Henkel, M. Pleimling, C. Godre`che, and J. M. Luck, Phys. Rev. Lett.87,
265701~2001!#, does not hold for the Ising model.
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I. INTRODUCTION

The behavior of systems out of equilibrium is a subject
wide current interest@1#. Most of the attention is focused o
glassy or disordered systems. Nonetheless, many of the
teresting features of slow relaxation, such as aging, can
studied also in the simpler context of a phase-ordering p
cess. This is the dynamical process which takes place,
instance, when a ferromagnet is suddenly cooled from ab
to below the critical point. Then, ordered regions grow
coarsening. The process is slow, i.e., the typical size of th
regions increases with the power lawL(t);t1/z, wherez is
the dynamic exponent. For dynamics with nonconserved
der parameter~NCOP!, as it will be considered in this pape
z52 independent of dimensionality. In an infinite syste
equilibrium is never reached. Phase ordering has been s
ied for a long time now@2#. However, despite its relative
simplicity when compared to the complexity of glassy b
havior, there still remains lack of consensus and consider
confusion about the properties of the off equilibrium r
sponse function. This paper is devoted to clarify the iss
This is not a problem of minor importance, given that pha
ordering is regarded as a paradigmatic example of ou
equilibrium behavior.

For definiteness, let us think of an Ising ferromagnet w
Hamiltonian

H@s#52J(
^ i , j &

s is j , ~1!
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initially prepared at very high temperature and quenched
the timet50 to a final temperatureT,TC . In a process of
this type the initial magnetization is zero and remains zero
all times ^s i(t)&50 for t>0. Quantities of interest are@3#
the autocorrelation function

C~ t,s,t0 ,tsc ,teq!5^s i~ t !s i~s!&, ~2!

wheret>s>0 are two times after the quench and the line
~auto!response function

R~ t,s,t0 ,tsc ,teq!5
]^s i~ t !&
]hi~s!

U
h50

, ~3!

wherehi(s) is the external field conjugated to the order p
rameter. Traditionally, in phase-ordering studies most of
attention has been devoted to the correlation function@2#,
while the response function has remained in the backgrou

In addition to the two observation timest and s, in Eqs.
~1! and~2! we have explicitly indicated also a dependence
the following characteristic times.

t0;L2z. This is a microscopic time related, through th
dynamic exponentz, to such a microscopic length as th
lattice spacing or the inverse momentum cutoffL21.

tsc . The process of phase ordering is characterized
dynamical scaling in the asymptotic time region~or late
stage!. The characteristic timetsc separates the preasymp
totic from the asymptotic regime, i.e., it gives a measure
how much time is needed after the quench for scaling to
in.

teq . After the formation of domains of ordered region
equilibrium is rapidly reached in the interior of domains. T
characteristic time needed to establish this local equilibri
is the same as the equilibration time in the pure orde
©2003 The American Physical Society31-1
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phases. It is given byteq;jz, where j is the equilibrium
correlation length in the pure phases at the final tempera
T andz is the dynamic exponent introduced above.

The correlation and response functions can always
written as the sum of two contributions@3#:

C~ t,s,t0 ,tsc ,teq!5Cst~ t2s,t0 ,teq!1Cag~ t,s,t0 ,tsc!,
~4!

R~ t,s,t0 ,tsc ,teq!5Rst~ t2s,t0 ,teq!1Rag~ t,s,t0 ,tsc!,
~5!

where the stationary contributions are what one has in e
librium in the pure phases. Therefore, the usual fluctuati
dissipation theorem is satisfied

Rst~ t2s,t0 ,teq!5
1

T

]Cst~ t2s,t0 ,teq!

]s
. ~6!

The rest, the aging contributionsCag(t,s,t0 ,tsc) and
Rag(t,s,t0 ,tsc), are what is left over due to the existence
slow out of equilibrium degrees of freedom. The above s
is useful fors sufficiently large, i.e., for

s@teq ~7!

in order to have well separated time scales for equilibri
and nonequilibrium behaviors and for

s@tsc ~8!

in order for Cag(t,s,t0 ,tsc) and Rag(t,s,t0 ,tsc) to exhibit
scaling behavior.

In connection with the aging contributions there are t
basic questions.

~i! How do Cag(t,s,t0 ,tsc) and Rag(t,s,t0 ,tsc) scale in
the late stage?

~ii ! What is the relation betweenCag(t,s,t0 ,tsc) and
Rag(t,s,t0 ,tsc), if any?

The second question belongs to the general area of the
of equilibrium generalization of the fluctuation-dissipatio
theorem@4#. This is a problem not as trivial as it is believe
to be for phase-ordering systems@5,6#, with interesting im-
plications on the connection between statics and dynam
@7#. In this paper we concentrate on the first question wh
is preliminary to the second one.

Assuming thats is large enough for Eqs.~7! and~8! to be
satisfied and droppingtsc , the scaling form ofCag(t,s,t0) is
given by

Cag~ t,s,t0!;s2bg~ t/s,t0 /s!. ~9!

It is well known @2# that b50. Furthermore, fors@t0 one
can sety50 in g(x,y) and it is also well known that forx
@1 one hasg(x,0)5g(x);x2l/z, where l is the Fisher-
Huse exponent. Information aboutRag(t,s,t0), instead, is
scanty. Writing the scaling relation analogous to Eq.~9! in
the form

Rag~ t,s,t0!5s2(11a) f ~ t/s,t0 /s! ~10!
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both a and f (x,y) are much less known thanb andg(x,y).
Despite considerable efforts, no consensus has been rea
as of yet on the value ofa. The situation for the scaling
function f (x,y) is not much better. Recently, Henkel, Pleim
ling, Godrèche, and Luck~HPGL! @8#, using local scale in-
variance@9#, have derived an explicit form of the scalin
function which is supposed to be of general validity. Ho
ever, under close scrutiny this form appears neither to
obeyed in those cases where an exact solution is availa
nor to fit numerical data for Ising systems, as will be sho
in Sec. III.

There is more than one reason for such an unsatisfac
state of affairs. The first one is due to a qualitative analy
@10# of the relation between the response function and
density of defects. A naive use of this argument leads to
conclusion thata is independent of dimensionality, e.g., fo
scalar systemsa51/z. In this form, due to its simplicity, this
argument has become deeply rooted in the literature@7,11–
13#, despite the accumulation of exact@14–16#, approxi-
mated@5,13#, and numerical results@5,17,18# incompatible
with it. As we shall see,Rag(t,s,t0) is trivial in the sense tha
it is proportional to the defect density only in the short tim
regime, but in no case this implies thata is independent of
dimensionality. Another reason is that in simulatio
Rag(t,s,t0) is too noisy to work with and, in order to dea
with more manageable quantities, one must resort to the
tegrated response functions~IRFs!. The price for this is that
reconstructing the scaling properties ofRag(t,s,t0) from
those of an IRF is not as simple as it might look at first sig
@18#. This will be the main theme of the paper.

We will show that, through the combined use of exa
results and numerical simulations, definite conclusions
be reached for the exponenta by analyzing in detail what
actually goes on in the different methods employed to eva
ate it. For what concerns the scaling functionf (x,y), in-
stead, our understanding of the problem remains incomp

The paper is organized as follows. In Sec. II we revie
existing information aboutRag(t,s,t0), make general consid
erations on the scaling function, and comment on the HP
theory. In Sec. III we analyze the problem of retrieving t
properties ofRag(t,s,t0) from those of an IRF concentratin
on the zero-field-cooled magnetization. Section IV is devo
to the same problem from the side of the thermoreman
magnetization. In Sec. V we use the solution of the largeN
model as an explicit illustration clarifying what goes o
when different IRF are employed to obtain information
Rag(t,s,t0). Concluding remarks are made in Sec. VI.

II. WHAT IS KNOWN ABOUT Rag

This paper is devoted to the study of the exponenta and
the scaling functionf (x,y) entering Eq.~10!. We first sum-
marize what is known from exact and approximate analyti
results providing direct access toRag(t,s,t0). We, then,
make general considerations onf (x,y) and some remarks on
the HPGL form for it.

Ising model d51. In the exact analytical computation o
the response function@14,15# in thed51 kinetic Ising model
1-2
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SCALING OF THE LINEAR RESPONSE FUNCTION . . . PHYSICAL REVIEW E68, 046131 ~2003!
with Glauber dynamics, after takings@tsc and neglecting
t0 /s, one finds

Rag~ t,s!;s21~ t/s21!21/2 ~11!

from which follows

a50 ~12!

and

f ~x,0!;~x21!21/2. ~13!

Furthermore, the correlation function is given by@19,20#

C~ t,s!5
2

p
arcsinA 2

11t/s
, ~14!

which givesC(t,s);(t/s)21/2 for t/s@1. Hence, recalling
z52, one hasl51 and Eq.~13! can be rewritten as

f ~x,0!;
xa11/22l/z

~x21!a11/2
. ~15!

It should be mentioned thata50 has been found numericall
also in the case of the kinetic Ising chain with Kawasa
dynamics@21#.

Large-N model.Solving analytically the large-N model
we have found@16# ~see also Sec. V! Rag(t,s,t0) of form
~10! with

a5~d22!/2 ~16!

and

f ~x,y!;
xa112l/z21

~x211y!a11
, ~17!

where d is arbitrary andl5d/2. Notice thata50 for d
52.

Gaussian auxiliary field (GAF) approximation.Berthier,
Barrat, and Kurchan@13# have calculated analytically an IR
using a GAF approximation based on the Ohta-Jasn
Kawasaki method@2#. From their computation it is easy t
extractRag(t,s,t0) which is in form ~10! with

a5~d21!/2 ~18!

and

f ~x,y!;
xa11/22l/z

~x211y!a11/2
~19!

with l5d/2. Their calculation involves a diffusion consta
of the form D5(d21)/d which prevents lettingd→1, so
they considerd>2. We have worked out@5# an alternative
GAF approximation, without restriction on dimensionalit
which extends Eqs.~18! and~19! to d>1. Then, we recover
a50 for d51 as in the Ising case.
04613
i
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A. General form of f „x,y… and implications for Rag„t,s,t0…

All the above results forf (x,y) are of the form

f ~x,y!;
x2b2e

~x211y!a
, ~20!

wheree50 if the correlation length in the low-temperatu
pure phase is finite, like in thed51 Ising model and in the
GAF approximation, ore51 if the low-temperature phase i
critical @22# like in the large-N model@16# ~see also Sec. V!.

We now make the phenomenological assumption that
~20! is valid in general. Then the task becomes that of find
the exponentsa, a, andb. For this it is useful to look at the
short and long time behaviors.

Short time behavior.Let us rewriteRag(t,s,t0) introduc-
ing the time differencet5t2s in Eq. ~20!,

Rag~ t,s,t0!5sa2(11a)F ~t/s11!2b2e

~t1t0!a G . ~21!

Keeping t fixed and lettings to become large, to lowes
order int/s we find

Rag~ t,s,t0!;s2dF te

~t1t0!aG ~22!

with

d5~11a!2~a2e! ~23!

and wheree is the same as in Eq.~20!. Therefore, from the
short time behavior one can extractd. An important obser-
vation is that in the three explicit cases considered abovd
coincides with the exponent entering in the time depende
of the density of defects. At the times, this is given by

L~s!2n;s2n/z, ~24!

whereL(s) and z are the domain size and the dynamic e
ponent introduced above,n51 for N51, n52 for N.1,
and N is the number of components of the order parame
@2#. One can, then, immediately verify that

d5n/z. ~25!

In the d51 Ising model and in the GAF approximatio
wheree50 and

a5a11/2 ~26!

from Eq. ~23! we get d51/2, while in the large-N model
with e51 and

a5a11 ~27!

we getd51.
Long time behavior.In the large time regimet/s@1, from

Eqs.~10! and ~20! follows

Rag~ t,s,t0!;s2(11a)~ t/s!2lR /z ~28!
1-3
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with

lR /z5a1b. ~29!

Summarizing, the exponentsa, a, andb can be obtained, in
principle, by making three different measurements
Rag(t,s,t0): ~1! s dependence for fixedt/s givesa @from Eq.
~10!#; ~2! s dependence for fixedt givesd @from Eq. ~22!#;
and~3! t dependence for fixeds giveslR /z @from Eq. ~28!#.
Before going into this, let us comment on the form of t
scaling function derived by HPGL in Ref.@8#.

B. Response function from local scale invariance

Without making separation~5! between stationary and ag
ing components and neglecting the dependence ont0, HPGL
assume that the full response functionR(t,s) obeys the scal-
ing form

R~ t,s!;s2(11a) f HPGL~ t/s!. ~30!

Then, using local scale invariance arguments they make
prediction that, in general, for phase ordering, one has

f HPGL~x!;
xa112l/z

~x21!a11
, ~31!

wherel is the Fisher-Huse exponent, provided there are
long range correlations in the initial condition. In support
Eq. ~31!, they invoke the exact solution of the spheric
model @23–25#, which is equivalent to the large-N model,
and numerical simulations for the Ising model withd52 and
d53. We make the following comments.

In the spherical or large-N model Eq.~31! indeed repro-
duces the full response function. This coincides with the
ing contribution~17! for x@1 but not forx.1. This differ-
ence will turn out to be important~see Sec. V!.

Equation~31! is contained in the general form~20! with
e50, b5l/z2(a11), and a5a11. Inserting into Eq.
~23! follows that in all cases one finds the unphysical res
d50. Furthermore, one should also havea5a11 always,
while from the explicit examples considered above this
true only in the large-N case and not in thed51 Ising model
or in the GAF approximation.

HPGL theory is supposed to hold also for quenches
TC . In that case the validity of Eq.~31! has been questione
in the framework of the field theoretic methods for the
sponse function@26#.

About the support to Eq.~31! from numerical simulations
we will comment below.

Now, in order to go beyond the explicitly solvable cas
the problem is to determine the exponentsa, a, andb in the
Ising model withd.1. As stated in the Introduction, mea
surement ofRag(t,s,t0) is too noisy, so the program outline
in Sec. II A on the basis of Eqs.~22! and ~28! requires an
unrealistically long computing time. In the following sectio
we discuss how to proceed with the help of IRF.
04613
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III. ZERO-FIELD-COOLED MAGNETIZATION

Indirect information onRag(t,s,t0) comes from numeri-
cal results on IRF. In general, an IRF is defined by

m~ t,t2 ,t1 ,t0 ,tsc ,teq!5E
t1

t2
dsR~ t,s,t0 ,tsc ,teq! ~32!

with t>t2>t1>0 and using Eq.~5! one has

m~ t,t2 ,t1 ,t0 ,tsc ,teq!5mst~ t2t2 ,t2t1 ,t0 ,tsc ,teq!

1mag~ t,t2 ,t1 ,t0 ,tsc!. ~33!

We will concentrate on the second contribution in the rig
hand side. The reason for introducing an IRF is that
integration over (t1 ,t2) lowers the noise. However, if on
has to resort to an IRF, there is the related problem of
trieving the properties ofR(t,s) from it. This is not straight-
forward. IRFs usually employed are the following.

~1! The thermoremanent magnetization~TRM!,

r~ t,tw ,t0 ,tsc ,teq!5m~ t,t25tw ,t150,t0 ,tsc ,teq!, ~34!

obtained by looking at the response at the timet to an exter-
nal field acting in the interval (0,tw)

~2! The zero-field-cooled~ZFC! magnetization,

x~ t,tw ,t0 ,tsc ,teq!5m~ t,t25t,t15tw ,t0 ,tsc ,teq!, ~35!

obtained by looking at the response at the timet when the
field acts in the interval (tw ,t).

Both these quantities do have shortcomings. For TRM
problem is evident. The integration starts att150, so preas-
ymptotic contributions are always included. The depende
on tsc cannot be neglected and this turns out to make
particularly hard to extract the asymptotic behavior in t
cases of interest.

With ZFC magnetization there is no such problem. Taki
tw@tsc , and neglectingtsc thereafter, one can be confident
be in the asymptotic region where scaling holds. So, us
~10! with f (x,y) of the general form Eq.~20! and consider-
ing the case withe50, one has

xag~ t,tw ,t0!5tw
2aF~ t/tw ,t0 /tw! ~36!

with

F~x,y!5x2aE
1/x

1

dz
zb1a2(a11)

~12z1y/x!a
. ~37!

The first observation is that if one seeks to determinea from
Eq. ~36! by looking at the behavior ofxag astw is varied and
x5t/tw is kept fixed, one must be aware that thetw depen-
dence coming fromt0 /tw may play a role. In other words
y5t0 /tw may act as a dangerous irrelevant variable. Nam
defining the exponentax by

xag~ t,tw!;tw
2axx̂~x!, ~38!
1-4
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there may be a difference betweena in Eq. ~36! and ax in
Eq. ~38!. This depends on whether the integral in Eq.~37!
diverges or not at the upper limit of integration asy→0.
This, in turn, depends on the value ofa. The second obser
vation is thata can be extracted from the largex behavior of
F(x,y), as we shall see in the following. Instead, the task
extractingb from Eq.~37! remains exceedingly complicated

A. The exponentsa and ax

The possibility thatax might not be identifiable witha,
due to the presence ofy5t0 /tw , can be checked explicitly in
the large-N model @16# and in the GAF approximation
@5,13#, where ZFC magnetization can be calculated with
bitrary d. In both cases there is a valuedx of the dimension-
ality such thaty is dangerous irrelevant abovedx . This im-
plies thatax coincides witha for d,dx and is given by Eqs.
~16! and~18!. Instead,ax is different froma and is given by

ax5d ~39!

for d.dx with d given by Eq.~25!, which is independent o
dimensionality. Logarithmic corrections appear atd5dx ,
much in the same way as at the upper critical dimensiona
in ordinary critical phenomena. The relation betweenax and
a in these two models is given by

ax5H a for d,dx

d with logarithmic corrections for d5dx

d for d.dx
~40!

with d51 and dx54 in the large-N model and withd
51/2 anddx52 in the GAF approximation. We emphasiz
that in these two solvable cases, Eq.~39! holds only ford
.dx whereaxÞa.

Next, from extensive numerical simulations@17,5,18# of
the Glauber-Ising model withd52,3,4 we have measuredax

obtaining data which are fairly well consistent~Fig. 1! with

FIG. 1. Exponentax in the Ising model at various dimension
alities. The continuous line represents Eq.~41!, while the dots are
the values from the exact solution of the model atd51 and from
simulations withd52,3,4.
04613
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the phenomenological formula

ax5H ~d21!/4 for d,3

1/2 with logarithmic corrections for d53

1/2 for d.3.
~41!

Since in the scalar cased51/2, it is evident that pattern~40!
is followed also in the Ising model withdx53.

We may, then, conclude that in all cases—exact, appro
mate, and numerical—ax is given by Eq.~40! and that, there-
fore, the exponenta obeys the general formula

a5d
d2dL

dx2dL
, ~42!

where dL is the dimensionality wherea50. According to
this picture, the distinction among the different syste
comes through the values ofd, dx , anddL ~see Table I!.

In this respect, notice that forN51 both from simulations
and from GAF one hasd51/2 anddL51, while there is a
discrepancy betweendx53 anddx52. However, this is not
worrisome. As explained in Ref.@5#, the dimensionality de-
pendence ofax below dx takes place becausedx is the di-
mensionality below which minimization of magnetic ener
competes effectively with minimization of surface tension
driving interface motion. Therefore, the balance of these t
mechanisms is very sensitive to the treatment of surface
sion and it should not come as a surprise that from an
controlled approximation, such as those of the GAF type
value ofdx which differs from the one observed in simula
tions is obtained. The shift fromdx53 to dx52 means that
in the GAF approximation surface tension is overestima
with respect to simulations.

B. The scaling function x̂„x… and the exponenta

Although the results described above@17,5,18# yield un-
equivocallydx53 for N51, in order to treat this point mos
carefully, we have again investigated the behavior
xag(t,tw) with very accurate simulations of the Ising mod
with NCOP,d52,3,4, and for different values oftw in order
to get data also on the scaling functionx̂(x), which has not
been studied previously.

First, let us illustrate the algorithm. There are seve
ways to isolate the aging contributionxag(t,tw). The most
obvious is to compute the totalx(t,tw) by simulating a
quenched system and then to subtract from it the station
part xst(t,tw) obtained by simulation of a system in equilib
rium at the final temperature of the quench. A different alg

TABLE I. Values ofd, dL , anddx in the different models.

Ising GAF N5`

d 1/2 1/2 1
dL 1 1 2
dx 3 2 4
1-5
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rithm was introduced by Derrida@27# regarding the station
ary contribution as due to thermal fluctuations inside the b
of domains and the aging part as produced from the in
faces. The next step is to isolate the spins belonging to
interface. In order to do this a parallel simulation is p
formed of two systems with different initial conditions. Th
first is prepared in equilibrium at the initial temperature a
then is quenched to the final temperatureT, while the second
is in equilibrium at the final temperatureT from the begin-
ning. These two systems evolve with the same thermal
tory at the temperatureT. At each time step spins that ar
flipped in the first system but not in the second are con
ered as interfacial and their response is assigned to the a
part.

These two methods are equivalent, but also numeric
very inefficient. Let us refer to them as global methods. T
reason for inefficiency is that in order to extract the respo
produced by the spins on the interfaces one has to simu
the whole lattice. Since the interface density decrease
t21/z a huge amount of CPU time can be saved by an a
rithm updating only the interfacial spins. We stress that a
algorithm is crucial in order to have reliable results in
numerically hard problem such as this. Therefore, we h
adopted a no-bulk-flip algorithm, where a list of interfac
spins is updated at each move following the criterion tha
spin belongs to an interface if at least one of the nea
neighbors is not aligned. Only moves of the interfacial sp
are allowed. We then take the response of this system
xag(t,tw).

In d51 it can be shown@14# that the no-bulk-flip algo-
rithm corresponds to taking the limit of an infinite ferroma
netic coupling (J→`) in the Ising Hamiltonian and that thi
isolates exactly the aging part of the response function. W
d.1 theJ→` limit and the no-bulk-flip algorithm produce
different dynamical evolutions and an argument analogou
the one in thed51 case cannot be made. What happen
that the limit J→` does not isolatexag(t,tw) because, be-
sides freezing spins in the bulk, it also freezes most of
interfacial spins. Notice that the no-bulk-flip dynamics do
not obey detailed balance. This is simply due to the fact t
bulk spins are frozen. However, this is not a serious prob
since we already know that by restoring moves in the b
detailed balance is recovered producing the stationary c
tribution in the response function, which we are not int
ested in.

We have performed the simulations with the no-bulk-fl
algorithm, after checking that the results are consist
within 5% with those of the global algorithms. In practic
we measure the quantity

xag~ t,tw!5
1

Nh0
2 (

i 51

N
^s i&hi ,̄ ~43!

wherehi is a quenched configuration of an uncorrelated r
dom field, which takes the values6h0 with probability 1/2.
The angular brackets stand for the average over thermal
tories, generated with the no-bulk-flip algorithm, and t
overbar denotes the average over random field config
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tions. Simulations have been performed atT/TC50.66 for
all values ofd ~for the lattice size and the number of realiz
tions see Table II!. xag(t,tw) is measured in unitsJ21 and
time in units of Monte Carlo steps. For each thermal histo
we have changed also the random field configuration.

First, we have obtainedax by plotting xag(t,tw) versus
tw , for fixed values ofx5t/tw . In the range oftw explored
there is excellent power law behavior. Withx57 we find
~Fig. 2! ax50.28 for d52, ax50.47 for d53, and ax

50.50 for d54. These numbers reproduce the results
tained previously@17,5,18# confirming thatax in the Ising
model obeys closely Eqs.~40! and ~42! with d51/2, dx

53, anddL51 ~see also Fig. 1!. Furthermore, the observe
behavior is with good accuracy independent ofx, as is shown
in the inset of Fig. 2. The presence of a logarithmic corr
tion atd53 is hard to establish from the data of Fig. 2 sin
we have only one decade intw . In Refs. @17,5# where
xag(t,tw) was plotted againstt for fixed tw over four de-
cades, the logarithmic behavior is accessible. Also, it sho
be mentioned that Eq.~41! is a phenomenological formula
so it is hard to say whether the measured valueax50.47 for
d53 is due to logarithmic corrections or to some other eff
not captured by Eq.~41!. In any case, the quality of the dat

TABLE II. Lattice size N and number of realizations in th
computation ofxag(t,tw) at different waiting times.

d52 d53 d54
tw N Realiz. N Realiz. N Realiz.

25 10242 2000 1003 1000 424 1600
50 10242 2000 1503 1000 684 180
100 10242 2000 1503 1500 684 75
250 10242 2300 1503 2700
500 10242 15 000
1000 10242 17 000
1750 10242 17 000
2500 10242 6000

FIG. 2. xag(t,tw) vs tw for fixed x5t/tw . The slope yieldsax .
The plotted lines correspond tox57. Values ofax for different
values ofx are depicted in the inset.
1-6
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SCALING OF THE LINEAR RESPONSE FUNCTION . . . PHYSICAL REVIEW E68, 046131 ~2003!
for d52 allows to definitely rule outax50.5, predicted by
the qualitative argument referred to in the Introduction and
be discussed shortly.

Next, in order to investigate the scaling functionx̂(x) in
Eq. ~38!, notice that from Eqs.~36! and ~37! follows the
largex behavior

x̂~x!;H x2a for a,1

x2a ln x for a51

xa2a21 for a.1.

~44!

Using the values ofax from Fig. 2, we have plotted
tw
axxag(t,tw) versusx5t/tw for different values oftw ~Figs.

3–5!.
Collapse of the data is obtained forx sufficiently large,

where the scaling function decays with a power law and
exponent which coincides withax . This is consistent with
Eq. ~44! only if a5a11/2 as in Eq.~26! and this rules out
a5a11, which ought to apply according to the HPG
theory. Another way to see thata5a11 is untenable is tha
this would imply thatx̂(x) goes to a constant for largex

FIG. 3. Scaling functionx̂(x) for the d52 Ising model with
T/TC50.66.

FIG. 4. Scaling functionx̂(x) for the d53 Ising model with
T/TC50.66.
04613
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whena.1. This, in turn, would lead to the unphysical co
clusion thatxag(t,tw) does not decay to zero for larget and
fixed tw whend.dx . Therefore, we find that Eq.~26! holds
for the Ising model not only ford51, but also at higher
dimensionality.

In conclusion, Eqs.~42! and~26! are our main results for
a anda in the Ising model withd ranging from 1 to 4 and
with Eq. ~40! explaining howa is related toax .

C. Qualitative conjecture on ax

We may now comment on the qualitative conjecture m
tioned in the Introduction. Stating@10,7# that the aging con-
tribution of ZFC magnetization ought to be proportional
the density of defects and assuming scaling, one finds

xag~ t,tw!;tw
2dx̂~ t/tw!, ~45!

whered is given by Eq.~25!. This requiresax5d for all d
contrary to the evidence presented above and summarize
Eq. ~40!, which restricts the validity of Eq.~39! to d.dx .
This makes a big difference, for instance, in thed52 Ising
model where from Eq.~40! ax51/4, while from Eq.~45!
follows ax51/2. In order to understand why Eq.~45! breaks
down below dx , let us go back to the behavior o
Rag(t,s,t0) in the short time regime. From Eq.~22! we may
write

Rag~ t,s,t0!;s2dh~t,t0!, ~46!

whereh(t,t0) is some function of the time difference. Th
meaning of this is that the response, due to an impuls
perturbation at the times, is proportional to the density o
defects at that instant of time with a proportionality fact
containing the retardation effect. This does not hold anym
in the long time regimet@s. When the time intervalt is
large with respect tos, multiple defect transits may hav
occurred through the observation site, spoiling form~46!.
Sticking to the short time regime, i.e., takingt2tw!tw and
using Eq.~46!, from definition~35! follows

xag~ t,tw!;tw
2dxs~ t2tw!, ~47!

FIG. 5. Scaling functionx̂(x) for the d54 Ising model with
T/TC50.66.
1-7
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CORBERI, LIPPIELLO, AND ZANNETTI PHYSICAL REVIEW E68, 046131 ~2003!
wherexs(t2tw) is a function of the time difference, whic
in Refs. @5,17# we have identified with the ZFC magnetiz
tion associated with a single defect. Now, Eqs.~47! and~45!
do require

x̂~ t/tw!;xs~ t2tw!, ~48!

which can hold only if both functions are constant, and t
is precisely the point. As we have explained in Refs.@5,17#,
xs(t2tw) contains the cumulative effect on a single defect
the perturbation acting all along the time interval (tw ,t).
This saturates rapidly to a constant when the defect deg
of freedom act paramagnetically and the underlying de
motion is uncorrelated with the external field. However,
dimensionalities low enough to reduce surface tension be
the threshold where the external field may take part in d
ing defect motion,xs(t2tw) acquires a nontrivial time de
pendence which rendersaxÞd for d,dx . Finally, notice
that in the framework of the qualitative conjecture withax

5d independent of dimensionality, there is no explanat
for the exactd51 resultax50. Instead, according to Eq
~41! this exact result, far from being an anomaly, is emb
ded as a limiting behavior in the smooth dimensionality d
pendence ford,3.

IV. TRM

Dealing with TRM, separation ~33! gives r(t,s)
5*0

twRst(t2s)1*0
twRag(t,s). Contrary to what happens fo

ZFC magnetization, wherexst for long time saturates to a
constant, here for the stationary contribution there are
possibilities: ~i! if Rst(t2s) decays exponentiallyrst(t
2tw) also decays exponentially or~ii ! if Rst(t2s) decays
with a power law, like in the large-N model, rst(t2tw) is
subdominant with respect torag(t,tw). In both cases we can
neglectrst and with it the distinction betweenr andrag .

As mentioned previously, TRM is affected by preasym
totic contributions which cannot be eliminated. This make
quite difficult to establish if the asymptotic behavior h
been reached in the simulations and ultimately to hav
reliable estimate ofa. In order to unravel what is the effect o
the preasymptotic contributions on the scaling behavior
TRM, we have resorted as a guide to the solution of
large-N model ~Sec. V!. Here, we anticipate the results.

Assumingtw.tsc , in the large-N case there exists a d
mensionalitydr54 such that ford,dr TRM undergoes a
crossover with a characteristic timet* , which may also be
much larger thantsc . Introducing the effective exponent

ar,e f f52
] ln r~ t,tw ,t* !

] ln tw
U

t/tw

~49!

one finds

ar,e f f5H l/z for tw!t*

a for tw@t* .
~50!

For d5dr there is a crossover from a pure power law to
power law with logarithmic correction
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r~ t,tw ,t* !5H tw
2l/zE~ t/tw! for tw!t*

tw
2l/zln~ tw /tsc!E~ t/tw! for tw@t* .

~51!

Finally, for d.dr one has the simple power law

r~ t,tw ,t* !5tw
2l/zE~ t/tw! ~52!

and for all values ofd, in the time regime considered th
scaling function obeys

E~x!;x2l/z. ~53!

Taking this pattern as a guide~with dr , t* and exponents
model dependent! let us now turn to simulations of the Isin
model. Analyzing data, the first thing to do is to check if
behavior of the type

r~ t,tw!;tw
2arr̂~ t/tw! ~54!

holds. If this is the case and if an exponentar can be mean-
ingfully extracted, the next problem is relatingar to a. Ac-
cording to the behavior found in the large-N model, the iden-
tification ar5a can be made only ifd,dr and tw@t* .
Numerical results for TRM in the Glauber-Ising model we
first obtained by HPGL@8#. Plotting r(t,tw) against x
5t/tw for different tw in the rangetwP(25,250) ford52
andtwP(15,100) ford53 they have obtained forar a result
of the form

ar5H 1/2 with logarithmic corrections for d52

1/2 for d53
~55!

and they have made the identificationa5ar .
The next round of simulations was carried out by us@18#

at the same temperatures and for the same system siz
HPGL, but extending the range oftw up to 2500 ford52
and 250 ford53. Performing a different data analysis, i.e
plotting r(t,tw) versustw for fixed x5t/tw , we have found
good agreement between the slope of the curves in the l
tw region, which in the log-log plot gives the effective exp
nent ~49!, and the known values ofl/z for the Ising model
(l/z55/8 for d52 and l/z53/4 for d53). This is good
evidence that in the scalar case TRM follows the crosso
pattern obtained in the large-N model whend,dr and with
a crossover timet* larger than the maximumtw that we have
reached in the simulations. Furthermore, on the basis of
data, we have estimated that the largesttw used by HPGL in
Ref. @8# was not enough to enter the scaling regime~i.e., they
had alwaystw<tsc) and therefore the values ofar they have
obtained do not warrant any statement, neither on
asymptotic value ofar nor on a. Our longer range oftw
seems to be barely sufficient to enter the preasymptotic
gion wherear,e f f5l/z, suggesting that bothd52 and d
53 are smaller thandr , whose value in the Ising model, s
far, we do not know. Hence, in order to observe t
asymptotic exponent one should go to much longer wait
times tw .
1-8
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SCALING OF THE LINEAR RESPONSE FUNCTION . . . PHYSICAL REVIEW E68, 046131 ~2003!
Henkel and Pleimling@28# have produced new simula
tions ford52 extending the range oftw up to 5000. Plotting
r(t,tw) versustw for fixed x and adhering to the point o
view that the TRM data are affected by a long crossov
they claim~i! to have succeeded in going past the crosso
time reaching the asymptotic region and~ii ! to have found
that Eq.~55! is verified. The objection to this claim is that i
d52 one hasl/z55/8.1/2.ax51/4. Therefore, even if a
decrease of the slope from a number close tol/z50.625
toward 0.5 is observed over a narrow time window, there
no way to decide whether the true asymptotic regime
been reached or the slope might still keep on decreasing
going further withtw , until reaching asymptotics at 0.25.

In other words, the new simulations in Ref.@28# leave the
issue undecided and yet longer simulations are needed.
spite that, by now, there is sufficient evidence that TRM
not the most efficient and reliable way to get to the expon
a, we have undertaken simulations withtw up to 5000 for
d52 and 500 ford53 ~for the lattice size and number o
realizations see Table III!.

The double logarithmic plot ofr(t,tw) versustw for fixed
x shows~Fig. 6! that a power law behavior, possibly, sets

TABLE III. Lattice size N and number of realizations in th
computation ofrag(t,tw) at different waiting times.

d52 d53
tw N Realiz. N Realiz.

25 10242 2000 1003 1500
50 10242 2000 1503 2500
100 10242 2000 1503 2500
250 10242 13 000 1503 2500
500 10242 16 000 1603 2500
1000 10242 18 000
1750 10242 23 000
2500 10242 13 000
5000 20482 7000

FIG. 6. rag(t,tw) vs tw for fixed x57. The slopes in the largetw

region yieldingar,e f f for different values ofx are depicted in the
inset.
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only in the region of the largesttw reached. Taking the slop
in this region as a measure ofae f f,r we find values~inset of
Fig. 6! which lie above 0.5 for allx and that are just below
l/z50.625 for d52 and l/z50.75 for d53. Hence, al-
though we have reached the same maximum value oftw as in
Ref. @28# for d52 and we have gone much farther ford
53, we may state that no evidence of asymptotic behav
with ar51/2 is found. Rather, the combination of thed52
and d53 data in Fig. 6 shows unequivocally that, at be
only the onset of the scaling region is entered wherear,e f f is
about to take the preasymptotic valuel/z, confirming the
picture obtained in our previous work@18#.

In summary, we have accumulated sufficient numeri
evidence to establish that TRM data fit in the general patt
of behavior obtained from the solution of the large-N model,
with dr.3 and a value oft* which is greater than the larges
tw reached so far. Therefore, since asymptotics has not b
reached, no statement ona can be made from the prese
knowledge of TRM.

Finally, let us make a comment on the quotation in Re
@8,29,30# of the analytical solution of the GAF approxima
tion by Berthieret al. @13# as a support to the claim thata is
given by Eq.~55!. In fact, here is where is most evident th
type of confusion that can arise by not being careful ab
which exponent one is talking about. In their computati
Berthier et al. find ax51/2 for d>2 with logarithmic cor-
rection atd52, as in Eq.~55! which, however, is meant fo
a. What one should have clear in mind is that they comp
an ax for d>dx , i.e., right whereaxÞa. This can be
checked recalling that in the GAF approximationa is given
by Eq.~18! and thatdx52. Hence, ford52 the logarithmic
correction belongs toax and not toa. For d53 it is ax that
takes the value 1/2, while from Eq.~18! follows a51. So,
the results of Berthieret al.certainly cannot be quoted if on
wants to identify witha an exponent obeying Eq.~55!.

V. TRM AND ZFC MAGNETIZATION IN THE
LARGE- N MODEL

In this section we study in detail the large-N model
@16,31# as a useful example which gives the complete pict
of what happens when looking at the different response fu
tions introduced above.

Consider a system with vector order parameterfW (xW )
5„f1(xW ), . . . ,fN(xW )… and Hamiltonian of the Ginzburg
Landau form

H@fW #5E ddxF1

2
~¹fW !21

r

2
fW 21

g

4N
~fW 2!2G , ~56!

wherer ,0, g.0. In the large-N limit the equation of mo-
tion for the generic component of the order parameter
Fourier space is given by@16#

]f~kW ,t !

]t
52@k21I ~ t !#f~kW ,t !1h~kW ,t !, ~57!

whereh(kW ,t) is a Gaussian white noise with expectations
1-9
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CORBERI, LIPPIELLO, AND ZANNETTI PHYSICAL REVIEW E68, 046131 ~2003!
^hW ~kW ,t !&50,

^h~kW ,t !h~kW8,t8!&52T~2p!dd~kW1kW8!d~ t2t8!. ~58!

T is the temperature of the quench and the function of ti

I ~ t !5r 1g^f2~xW ,t !& ~59!

must be determined self-consistently, with the average on
right hand side taken both over thermal noise and ini
conditions. The formal solution of Eq.~57! is given by

f~kW ,t !5R~kW ,t,0!f0~kW !1E
0

t

dsR~kW ,t,s!h~kW ,s!, ~60!

whereR(kW ,t,s) is the response function

R~kW ,t,s!5
Y~s!

Y~ t !
e2k2(t2s) ~61!

with Y(t)5exp@Q(t)# and Q(t)5*0
t dsI(s). With an uncor-

related initial state at very high temperature the initial co
dition f0(kW )5f(kW ,t50) can be taken to be Gaussianly d
tributed with expectations

^f0~kW !&50,

^f0~kW !f0~kW8!&5D~2p!dd~kW1kW8!. ~62!

The actual solution is obtained once the functionY(t) is
determined. In order to do this notice that from the definiti
of Y(t) follows

dY2~ t !

dt
52@r 1g^f2~xW ,t&#Y2~ t !. ~63!

Writing ^f2(xW ,t)& in terms of the structure factor

^f2~xW ,t !&5E ddk

~2p!d
C~kW ,t !e2k2/L2

, ~64!

where L is the momentum cutoff and using Eq.~60! to
evaluate ^f(kW ,t)f(kW8,t)&5C(kW ,t)(2p)dd(kW1kW8) we ob-
tain

C~kW ,t !5R2~kW ,t,0!D12TE
0

t

dsR2~kW ,t,s!. ~65!

Then, inserting Eq.~64! into Eq.~63!, we obtain the integro-
differential equation

dY2~ t !

dt
52rY2~ t !12gD f S t1

1

2L2D
14gTE

0

t

ds fS t2s1
1

2L2D Y2~s!, ~66!
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where f (x)[*ddk/(2p)de22k2x5(8px)2d/2. After solving
this equation, the response function is given by

R~ t,s,t0!5E ddk

~2p!d
R~kW ,t,s!e2k2/L2

5~4p!2d/2
Y~s!

Y~ t !
~ t2s1t0!2d/2, ~67!

wheret051/(2L2).
Let us now come to the identification of the general stru

ture of Eq.~5!. Since in the stationary regimeY(t) is time
independent, we immediately obtain

Rst~ t2s,t0!5~4p!2d/2~ t2s1t0!2d/2 ~68!

and

Rag~ t,s,t0!5~4p!2d/2FY~s!

Y~ t !
21G~ t2s1t0!2d/2. ~69!

Notice thatRst(t2s,t0) is temperature independent, imply
ing that there is a stationary response also atT50. This
holds for soft spins, while for Ising spins there is no statio
ary response atT50.

Next, in order to investigate the scaling properties
must first learn about the time dependence ofY(t). We do
this in theT50 case, since quenches below the critical po
are controlled by theT50 fixed point@2#. Making the ansatz
Y(t)5At2v from Eq. ~66! one gets

Avt2(2v11)5rAt22v1
2gD

~8p!d/2
~ t1t0!2d/2 ~70!

and assuming that the left hand side is negligible one fi
v5d/4 with A5(8p)2d/2D/M0

2, whereM05A2r /g is the
zero temperature magnetization. This is consistent if, in
dition to t@t0, one has also

t@tsc52d/~4r !, ~71!

where the characteristic timetsc sets the time scale ove
which the three terms in Eq.~70! are all of the same order o
magnitude. Therefore,tsc is the characteristic time separatin
the early from the late stage.

The above described behavior ofY(t) is illustrated in Fig.
7 displaying the numerical solution of Eq.~66! for different
values ofr. In all numerical computations we will takeD
51, T50, and time is measured in unitst0. The onset of the
scaling behavior is sharp and we have identifiedtsc with the
time where the power law begins~inset of Fig. 7!. Then, for
s,t.tsc from Eqs.~67! and ~69! we have

R~ t,s,t0!5s2(11a) f̃ ~ t/s,t0 /s! ~72!

with

f̃ ~x,y!5~4p!2d/2xv~x211y!2(11a), ~73!

where
1-10
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SCALING OF THE LINEAR RESPONSE FUNCTION . . . PHYSICAL REVIEW E68, 046131 ~2003!
a5~d22!/2. ~74!

as in Eq.~16!.
The connection betweenv and l/z can be established

from the autocorrelation function. Keeping on consideri
T50, from C(kW ,t,s)5R(kW ,t,0)R(kW ,s,0)D follows

C~ t,s,t0!5E ddk

~2p!d
C~kW ,t,s!e2k2/L2

~75!

5~4p!2d/2Ds2v2(11a)~ t/s!v

3@ t/s111t0 /s#2(11a). ~76!

The requirement limt→`C(t,t)5M0
2 implies

2v511a ~77!

and comparing Eq.~76! with Eq. ~5! we find

v5l/z. ~78!

Hence, in the large-N model, l and a are not independen
exponents, since from Eqs.~77! and ~78! follows

l511a. ~79!

Nonetheless, for generality we shall keep on using the n
tion with two different exponentsl anda.

Finally, for the aging contribution~69! we may write

Rag~ t,s,t0!5s2(11a) f ~ t/s,t0 /s! ~80!

with

f ~x,y!5~4p!2d/2~xv21!~x211y!2(11a) ~81!

and writingv511a2l/z Eq. ~17! is recovered.
The above result shows that in the large-N model it is not

only Rag(t,s) to scale, but also the full autoresponse functi
R(t,s). This, obviously, means thatRst(t2s) obeys scaling,

FIG. 7. y(t) for different values ofr andT50. tsc is estimated
at the onset of the power law behavior and plotted againstr in the
inset.
04613
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as it can be checked immediately from Eq.~68! and this is a
consequence of the fact that the whole low-temperat
phase is critical.

A. TRM

We now explore the properties of the IRF in the largeN
model. Let us begin from TRM. Since the explicit forms~68!
and ~80! with Eq. ~81! show thatRst(t2s,t0) decays faster
thanRag(t,s,t0) with the time separationt2s, taking t@tw
and using definitions~33! and ~34! the stationary contribu-
tion to TRM can be neglected. Hence, in the following w
will ignore the distinction betweenr andrag . Furthermore,
taking tw.tsc and dropping the dependence ont0 we can
write

r~ t,tw ,tsc!5
t2l/z

~4p!d/2A
F E

0

tsc
dsY~s!1E

tsc

tw
dsY~s!G ,

~82!

where we have separated the preasymptotic from
asymptotic contribution in the integral. We shall see shor
that the first one plays a crucial role. Introducing the notat
B(tsc)5*0

tscdsY(s) and usingY(s)5As2l/z2(a11) in the
second integral, we find

r~ t,tw ,tsc!5tw
2l/z@K01K1tw

l/z2a#~ t/tw!2l/z, ~83!

where

K05~4p!2d/2FB~ tsc!

A
2

tsc
l/z2a

~l/z2a!
G ~84!

and

K15
1

~4p!d/2~l/z2a!
. ~85!

Equation~83! is the main result from which follows the non
trivial dependence ofar on dimensionality. Notice that al
the dependence on the preasymptotic behavior is collecte
K0 and the very presence of this nonvanishing term ent
that the asymptotic power governing TRM is eitherl/z or a
according to the sign of (l/z2a). Therefore, writingl/z
2a5(dr2d)/dr with dr54 we have a crossover ford
,dr , logarithmic corrections ford5dr , and a correction to
scaling ford.dr .

Introducing the characteristic time

t* 5S K0

uK1u D
1/[l/(z2a)]

, ~86!

Eq. ~83! for dÞdr can be rewritten as

r~ t,tw ,t* !5tw
2l/zẼ~ t/tw ,t* /tw! ~87!

with

Ẽ~x,y!5K0@16yl/z2a#x2l/z, ~88!
1-11
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where the1 and2 signs apply tod,dr andd.dr , respec-
tively. In the first case the crossover timet* is given by
~Appendix!

t* /tsc;tsc
d/(42d) ~89!

showing thatt* is a new time scale which can become mu
larger thantsc . Instead, in the second case from Eq.~86!
follows ~Appendix!

t* /tsc,1 ~90!

implying tw /t* .1 for any tw.tsc . Finally, for d5dr from
Eq. ~83! we have

r~ t,tw ,t* ,tsc!5~4p!2d/2tw
2l/zF11

ln~ tw /tsc!

ln~ t* /tsc!
G ln~ t* /tsc!

3~ t/tw!2l/z, ~91!

wheret* is given by

t* /tsc5eCtsc ~92!

andC is a constant~Appendix!.
Therefore, as anticipated in Sec. IV, the scaling proper

of TRM exhibit the following dimensionality dependence
d,dr . There is a crossover with the effective expone

ar,e f f52
] ln r~ t,tw ,t* !

] ln tw
U

t/tw

5l/z2F ~ tw /t* !l/z2a

11~ tw /t* !l/z2aG
3~l/z2a! ~93!

yielding

ar,e f f5H l/z for tw!t*

a for tw@t* .
~94!

d5dr . The crossover involves a logarithmic correction

r~ t,tw ,t* !5H tw
2l/zE~ t/tw! for tw!t*

tw
2l/zlog~ tw /tsc!E~ t/tw! for tw@t* .

~95!

d.dr . There is a pure power law for alltw.tsc ,

r~ t,tw ,t* !5tw
2l/zE~ t/tw! ~96!

with

E~x!;x2l/z. ~97!

In the end, in the large-N model the relation betweena
and the exponentar appearing in Eq.~54! is given by

ar5H a for d,dr

l/z with logarithmic corrections for d5dr

l/z for d.dr,
~98!
04613
s

wheredr54.
In order to illustrate the behavior of TRM we have solv

numerically forr(t,tw). In Fig. 8 we have plotted the effec
tive exponent~93! versustw for different values ofr ~giving
rise to different values oftsc), with fixed x5t/tw520 and
for d52.1,dr . The curves show quite clearly three diffe
ent regimes: the early regime to the left of the peak follow
by the intermediate regime going liketw

2l/z , whose size de-
pends ontsc , and eventually by the late stage regime goi
like tw

2a . The valuetmax of tw at the peak can be identifie
with tsc since it depends onr according to Eq.~71! ~see inset
of Fig. 8!. For completeness we have plotted the same fig
for d55.dr ~Fig. 9! which shows the existence only of th
early regime followed immediately by the asymptotic regim
with the exponentl/z ~without any crossover or intermed
ate scaling regime! according to Eq.~96!.

B. ZFC magnetization

Taking tw.tsc and using definitions~33!, ~68!, and ~69!
we have

FIG. 8. Effective exponentar,e f f in the large-N model vstw for
different values ofr with x520, d52.1, andT50. The value oftw

at the maximum corresponds totsc as shown in the inset.

FIG. 9. Effective exponentar,e f f in the large-N model vstw for
different values ofr with x520, d55, andT50.
1-12
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xst~ t2tw ,t0!5
2t0

12d/2

~4p!d/2~d22!
$12@~ t2tw!/t011#2a%

~99!

and

xag~ t,tw ,t0!5tw
2aF~ t/tw ,t0 /tw! ~100!

with

F~x,y!5~4p!2d/2x2aE
1/x

1

du~ul/z2(11a)21!

3~12u1y/x!2(11a). ~101!

Therefore, in order to establish howxag scales withtw it is
necessary to know how the scaling functionF(x,y) behaves
for small y. As already pointed out, this depends on the
havior of the integral at the upper limit of integration, whic
is convergent~divergent! for a,1 (a>1). Hence, from 1
2a5(dx2d)/2 with dx54 follows

FIG. 10. Effective exponentax,e f f in the large-N model vstw

for different values ofr with x520, d52.1, andT50.

FIG. 11. Effective exponentax,e f f in the large-N model vstw

for different values ofr with x520, d55, andT50.
04613
-

F~x,y!;H x2a for d,dx

x2a ln~x/y! for d5dx

y12a/x for d.dx .

~102!

Inserting into Eq.~100! and comparing with Eq.~38! we
recover Eqs.~40! and~42!. Finally, for largex we obtain the
analogous form of Eq.~44!,

x̂~x!;H x2a for d,dx

x2a ln x for d5dx

x21 for d.dx .

~103!

Notice that the separation of the stationary from the ag
response function has played a crucial role. Had we u
form ~31! of HPGL in Eq.~101! we would have obtained a
completely different behavior, withdx52 and in place of
Eq. ~40!,

ax5H a5d/221 for d,2

0 with logarithmic corrections for d52

0 for d.2.
~104!

In order to illustrate the difference in the behaviors
TRM and ZFC magnetization we have solved numerica
for xag(t,tw) and for the corresponding effective expone
ax,e f f(tw ,x) ~Figs. 10 and 11! with the same values ofd and
r used for TRM. These figures show that both above a
below dx there is no crossover, but there is only the ea
regime followed abruptly by the asymptotic power law b
havior, as for TRM abovedr ~Fig. 9!. Furthermore, we have
depicted in Figs. 12 and 13 the scaling functionx̂(x), ob-
tained by plottingtw

axxag(tw ,x) versusx for different tw ,
which obeys the power laws~103! for largex. These are the
analogous forms of Figs. 3 and 5.

We can now summarize what we have learned from
large-N model about the connection betweenar , ax , anda.
In this case the explicit solution~74! is available anda is a
linearly increasing function of dimensionality vanishing

FIG. 12. Scaling functionx̂(x) in the large-N model with d
52.1 andT50. In this caseax5a50.05.
1-13
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dL52. The question is how much of this could have be
inferred relying only on the information from TRM or ZFC
The answer is that bothar and ax coincide with a below
certain dimensionalitiesdr and dx . At d5dr and d5dx

there are logarithmic corrections, while above these dim
sionalitiesar andax are different froma and differ one from
the other~Fig. 14!. Although in the large-N model dr5dx

54, we have kept distinct notations becausedr , which is the
dimensionality wherel/z5a, and dx the dimensionality
wherea2150, need not to coincide in general. In the larg
N model they do coincide because of Eq.~79!. Furthermore,
even belowdr and dx , wherear5ax5a, there remains a
considerable difference between TRM and ZFC in relation
the time scales (t* and tsc) over which these exponents a
observable. Comparing Figs. 8 and 10 one can see
glance that the difference between these time scales in
tain conditions, here set by the value ofr, can become huge
and if working with TRM it may require an enormoustw
before reaching the asymptotic regime wherear anda can be
identified.

VI. CONCLUDING REMARKS AND OPEN PROBLEMS

In conclusion, we have shown that all existing analytic
results and the numerical evidence coming from ZFC m
netization in the Ising model are consistent with an expon
a of form ~42!. The dimensionality independent behavi
~39! predicted by the qualitative argument forax holds only
for d.dx where axÞa. This is due to the presence of
dangerous irrelevant variable. Once this is taken into
count, analytical and numerical results form a coherent p
ture and the issue can be considered as settled.

For what concerns Eq.~55!, regarded in Refs.@8,28–30#
as the exponenta in the Ising model, we have shown that
does not have any analytical foundation, because Ref.@13#
contains a computation ofax . Furthermore, the numerica
evidence, being based on TRM data, is inconclusive si
the largesttw reached so far are below the crossover timet* .
Therefore, tw is still far from being well inside the
asymptotic region as required for the TRM data to qualify
a challenge to those obtained from ZFC magnetizati

FIG. 13. Scaling functionx̂(x) in the large-N model with d
55 andT50. In this caseax51 anda51.5.
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There is no doubt that among all possible IRFs that one
employ to study the exponenta, TRM is the most unfavor-
able and the least reliable one, as abundantly explained in
previous sections.

For what concerns the scaling functionf (x,y), our ZFC
data are consistent with anf (x,y) in the Ising model of form
~20! with the exponenta5a11/2 in place ofa5a11, ap-
pearing in the HPGL theory. We have also shown that w
the HPGL theory it is not possible to reproduce the sh
time behavior ofRag(t,s,t0). Nonetheless, our knowledge o
the scaling functionf (x,y) is still incomplete, since from
ZFC data we cannot determine the exponentb.

After this survey of what can and what cannot be do
with ZFC and TRM data, it seems clear that in order to stu
Rag(t,s,t0) the right thing to do would be to use neither
them. Rather, one should use an IRF of the general form~32!
with t1@tsc to eliminate the crossover affecting TRM an
with t2,t in order to avoid the dangerous irrelevant variab
in the ZFC magnetization. Namely, assuming form~20! of
f (x,y) and using Eq.~32! one should consider

mag~ t,t2 ,t1 ,t0!5t2aE
t1 /t

t2 /t

dz
zb1a212a

~12z1t0 /t !a
. ~105!

If t2,t andt@t0, the dependence ont0 can be neglected an
the above equation can be used in two ways. Rewriting

mag~ t,t2 ,t1!5t2aE
x1

x2
dz

zb1a212a

~12z!a
~106!

and keepingx15t1 /t andx25t2 /t fixed, the exponenta can
be measured. Next, fort@t2 from Eq. ~105! follows

mag~ t,t2 ,t1!;t2aE
t1 /t

t2 /t

dzzb1a212a;t2(b1a) ~107!

from which b1a can be measured, whilea, as we have
seen, can be extracted fromx̂(x). We plan to pursue the
investigation of this IRF in future work.

Finally, the results obtained in this paper open a num
of interesting problems in the general theory of phase ord

FIG. 14. Overview of the dimensionality dependence of the
ponentsa,ax ,ar in the large-N model.
1-14
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ing. We stress that our results are phenomenological. In
ticular, we do not know whydL anddx take the values they
take. dL seems to coincide with the ordinary lower critic
dimensionality, but we do not know whether this is really s
or if it is just a coincidence. We can tell even less about
values taken by the upper dimensionalitydx . We should note
the failure of the GAF approximation to reproduce the c
rect dependence ofa on d in the scalar case. In short, w
have no theory for the observed behavior of the respo
function in phase-ordering kinetics.
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APPENDIX

From definitions~84!, ~85!, and~86! we have

t* 5FB~ tsc!ul/z2au
A

6tsc
l/z2aG1/(l/z2a)

~A1!

with the 1 (2) sign if l/z2a,(.)0, i.e if d.(,)4. In
order to estimateB(tsc) we use the linear approximation

B~ tsc!5E
0

tsc
ers5~ert sc21!/r . ~A2!
int

a

tt.

.

y

t

04613
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Then, usingA5(8p)2d/2D/M0
2 and tsc52d/4r we find

B~ tsc!/A5Ctsc ~A3!

with

C54~8p!d/2~12e2d/4!M0
2/Dd ~A4!

and inserting into Eq.~A1! we get

t* /tsc5F ~42d!

4
Ctsc

d/461G4/(42d)

. ~A5!

For d,4 the above equation must be taken with the min
sign. This requirestsc.@C(42d)/4#24/d or 4ur u/d,@C(4
2d)/4#4/d. To lift this restriction on the value ofr one must
do better than the linear approximation in the estimate
B(tsc). Taking tsc large enough, Eq.~89! is obtained.

If d.4, instead, from Eq.~A5! follows t* ,tsc justifying
Eq. ~96!.

Finally, for d54 from Eq.~83! we get

r~ t,tw ,t* ,tsc!5tw
2l/zFB~ tsc!

A
1 ln~ tw /tsc!G

3~4p!2d/2~ t/tw!2l/z ~A6!

and definingt* by

ln~ t* /tsc!5B~ tsc!/A, ~A7!

Eqs.~91! and ~92! are recovered after using Eq.~A3!.
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